Find the inverse of each of the following matrices:
1.\begin{equation}A=\begin{pmatrix}1&a&0\\0&1&0\\0&b&1\\\end{pmatrix}\end{equation}The determinant of this matrix is 1,so this matrix is invertible.
\begin{equation}A^{*}=\begin{pmatrix}A_{11}&A_{21}&A_{31}\\A_{12}& A_{22}&A_{32}\\ A_{13}&A_{23}&A_{33}\\\end{pmatrix}=\begin{pmatrix}1&-a&0\\0&1&0\\0&-b&1\\\end{pmatrix}\end{equation}So the inverse matrix is\begin{equation}\frac{A^{*}}{|A|}=A^{*}\end{equation}$\Box$2.\begin{equation}B=\begin{pmatrix}1&1&0\\0&1&1\\0&0&1\\\end{pmatrix}\end{equation}The determinant of this matrix is 1,so this matrix is also invertible.\begin{equation}B^{*}=\begin{pmatrix}1&-1&1\\0&1&-1\\0&0&1\\\end{pmatrix}\end{equation}So the inverse matrix of $B$ is $B^{*}$.3.
\begin{equation}C=\begin{pmatrix}1&1&0\\1&1&1\\0&1&1\\\end{pmatrix}\end{equation}The determinant of $C$ is 0,so this matrix is not invertible.